Cell recognition based on topological sparse coding for microscopy imaging of focused ultrasound treatment
نویسندگان
چکیده
BACKGROUND Ultrasound is considered a reliable, widely available, non-invasive, and inexpensive imaging technique for assessing and detecting the development phases of cancer; both in vivo and ex vivo, and for understanding the effects on cell cycle and viability after ultrasound treatment. METHODS Based on the topological continuity characteristics, and that adjacent points or areas represent similar features, we propose a topological penalized convex objective function of sparse coding, to recognize similar cell phases. RESULTS This method introduces new features using a deep learning method of sparse coding with topological continuity characteristics. Large-scale comparison tests demonstrate that the RAW can outperform SIFT GIST and HoG as the input features with this method, achieving higher sensitivity, specificity, F1 score, and accuracy. CONCLUSIONS Experimental results show that the proposed topological sparse coding technique is valid and effective for extracting new features, and the proposed system was effective for cell recognition of microscopy images of theMDA-MB-231 cell line. This method allows features from sparse coding learning methods to have topological continuity characteristics, and the RAW features are more applicable for the deep learning of the topological sparse coding method than SIFT GIST and HoG.
منابع مشابه
Face Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملImaging techniques in dermatology
Since the discovery of X-rays, the use of imaging technology has continued to play an important role in medicine. Technological advancements have led to the development of various imaging modalities, most of which have been used to image organs deep within the human body. More recently, attention has focused on the application of imaging technology for evaluation of the skin. A variety of techn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2015